LIBRARY CARPENTRY

SQL

University of North Texas Libraries Friday, August 20, 2021 Complete the pre-workshop survey: https://carpentries.typeform.com/to/wi32rS?slug=2021-08-06-unt-online

Link to material covered today: https://librarycarpentry.org/lc-sql/

Workshop attendees are expected to follow the Carpentries code of conduct: https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html

Setup

Before You Start:

You will need to install **DB Browser for SQLite** and download the **doaj-article-sample** database. See Setup for instructions and further information.

- DB Browser for SQLite download page
 <u>https://sqlitebrowser.org/dl/</u>
- Library Carpentry: SQL setup page <u>https://librarycarpentry.org/lc-sql/setup.html</u>

Download the data

To import data, you'll need to open DB Browser for SQLite and download a zip file containing the data files for this tutorial.

- 1. Download the data files doaj-article-sample.zip from Zenodo.
- 2. Open the zip file with the zip utlity on your machine and save the folder and files to a location where you can easily find them. For example, your Desktop.
- 3. Contained in the zip file are two files, doaj-article-sample.db and doaj-article-sample.db.sql. You can either open the database file (less steps) or import the SQL file (more steps).

https://zenodo.org/record/2822005#.YRqN3YhKhaQ

INTRODUCTIONS

- Name, pronouns if you choose, location
- One thing you would like to automate in your work and/or what you hope to learn today

THIS IS ME:

Sarah Lynn Fisher, she/her, sarahlynn.fisher@unt.edu

University of North Texas Libraries

Program Coordinator – Digital Newspaper Unit

- National Digital Newspaper Program Texas
- Texas Digital Newspaper Program
- Gateway to Oklahoma History

Automate microfilm metadata database

WHY LIBRARY CARPENTRY?

Library Carpentry workshops teach people working in library- and information-related roles how to:

- Cut through the jargon terms and phrases of software development and data science and apply concepts from these fields in library tasks;
- Identify and use best practices in data structures;
- Learn how to programmatically transform and map data from one form to another;
- Work effectively with researchers, IT, and systems colleagues;
- Automate repetitive, error prone tasks.

WORKSHOP GOALS

- Teach skills
- Get started and introduce what's possible
- Build confidence in using these skills
- Encourage people to continue learning
- Positive learning experience

WORKSHOP REMINDERS

- Raise your hand or post questions in chat and the instructor or a helper will assist you
- Mute yourself if you aren't speaking
- Post comments in chat we will do our best to read these out loud at regular intervals
- We will take a break at 10:30 a.m. CST

INTRODUCTION TO SQL

- Structured Query Language, or SQL
- Used to communicate with relational databases
- Performs tasks like updating or retrieving data optimized for handling large amounts of data
- Not a general programming language keeps data separate from analysis
- SQL queries can be called from programming languages, like Python, to interact with databases
- Several variants all support the same basic statements

RELATIONAL DATABASES

- Consist of one or more tables of data
- Tables have *fields* (columns) and *records* (rows)
- Every field has a data *type*
- Every value in the same field of each record has the same type
- Tables are linked via matching fields, e.g. Title
- *Queries* are commands that find information or make calculations

DATABASE MANAGEMENT SYSTEMS

- SQL is the standard language for relational database management systems
 - Common examples: MySQL, MS Access, SQL Server, Oracle, Filemaker Pro
- SQLite what we will use in today's workshop
- Differences are only details of import/export of data and datatypes, proprietary extensions
- First step in building custom web applications that serve data to uses
 - WordPress, ecommerce sites like Amazon run on an SQL databases

INTRODUCTION TO DB BROWSER FOR SQLite

Open the database file

- Open DB Browser for SQLite
- Choose "File" > "Open Database" from the menu bar at the top of your screen.
- Navigate to where you saved the doaj-article-sample folder and/or files. For example, your Desktop.
- Select "doaj-article-sample.db".

INTRODUCTION TO DB BROWSER FOR SQLite

- See Tables on left side of the screen
- To see contents of table, click on the table and click Browse Data
- Write a query, click on Execute SQL tab
- Two ways to add new data:
 - Enter data into a CSV file and append
 - Adding data from a CSV file: Choose "File" > "Import" > "Table" from CSV file
 - Click the "Browse Data" tab, then click the "New Record" button

	B Browser for SQLite - C:\doaj-a	ticle-sample.db	
File	Edit View Tools Help		
	New Database New In-Memory Database	Ctrl+N	hanges Revert Changes 🚱 Open Project 😭 Save Project 🗟 Attach Database
	Open Database	Ctrl+O	Execute SQL
	Open Database Read Only	Ctrl+Shift+O	
×	Attach Database Close Database	Ctrl+F4	Type Schema
	Write Changes	Ctrl+S	CREATE TABLE "articles" ("id" INTEGER NOT NULL PRIMARY KEY AU
	Revert Changes		CREATE TABLE "journals" ("id" INTEGER NOT NULL PRIMARY KEY AL
	Import	+	Database from SQL file ABLE "languages" ("id" INTEGER NOT NULL PRIMARY KEY . ABLE "licences" ("id" INTEGER NOT NULL PRIMARY KEY AL
	Export	•	Table from CSV file ABLE "publishers" ("id" INTEGER NOT NULL PRIMARY KEY .
3	Open Project		CREATE TABLE sqlite_sequence(name,seq)
	Save Project		
\$	Save Project As		
()	Save All	Ctrl+Shift+S	
	1 C:\doaj-article-sample.db	Ctrl+1	
_	Exit	Ctrl+Q	

DB B	B Browser for SQLite - C:\doaj-article-sample.db						
File E	dit Vie	w Tools Help		1 -			
New	v Databa	ase 🔒 Open Database 💡 🕼 Write Changes 🕼 Re	Charles 🖗 Open Project 😭 Save Project	Attach Database 🛛 🗙 Close	Database		
Databa	se Struc	ture Browse Data Edit Pragmas Execute SQL					
<u>T</u> able:	artid	es 🗸 🕄 🔏 📑 🖶	🕫 🐴 🍓 🍇 Filter in any column				
	id	Title	Insert a new record in the current table	DOI	URL		
	Filter	Filter	Filter	Filter	Filter	Filter	
1	0	The Fisher Thermodynamics of Quasi-Probabilities	Flavia Pennini Angelo Plastino	10.3390/e17127853	https://doaj.org/article/	Fisher information	
2	1	Aflatoxin Contamination of the Milk Supply: A	Naveed Aslam Peter C. Wynn	10.3390/agriculture5041172	https://doaj.org/article/	aflatoxins AFM1 AF	
3	2	Metagenomic Analysis of Upwelling-Affected	Rafael R. C. Cuadrat Juliano C. Cury Alberto M	10.3390/ijms161226101	https://doaj.org/article/	PKS NRPS metager	
4	3	Synthesis and Reactivity of a Cerium(III)	Fabrizio Ortu Hao Zhu Marie-Emmanuelle Boulo	10.3390/inorganics3040534	https://doaj.org/article/	lanthanide cerium	
5	4	Performance and Uncertainty Evaluation of Snow	Magali Troin Richard Årsenault François Brissette	10.3390/hydrology2040289	https://doaj.org/article/	snow models hydro	
6	5	Dihydrochalcone Compounds Isolated from	Xiaoxiao Qin Yun Feng Xing Zhiqin Zhou Yuncon	10.3390/molecules201219754	https://doaj.org/article/	Malus crabapples I	
7	6	Ionic Liquids as Carbene Catalyst Precursors in t	Anton Axelsson Linda Ta Henrik Sundén	10.3390/catal5042052	https://doaj.org/article/	ionic liquid NHC OT	
8	7	Characterization of Aspartate Kinase from	Weihong Min Huiying Li Hongmei Li Chunlei Liu	10.3390/ijms161226098	https://doaj.org/article/	Corynebacterium pe	
9	8	Quaternifications and Extensions of Current	Tosiaki Kori Yuto Imai	10.3390/sym7042150	https://doaj.org/article/	infinite dimensional	
10	9	Imaging of HCC—Current State of the Art	Christina Schraml Sascha Kaufmann Hansjoerg	10.3390/diagnostics5040513	https://doaj.org/article/	hepatocellular carci	
11	10	Synthesis and Complexation of Well-Defined	Mark Billing Tobias Rudolph Eric Täuscher Raine	10.3390/polym7121526	https://doaj.org/article/	atom transfer radic	
12	11	UAV Control on the Basis of 3D Landmark Bearin	Simon Karpenko Ivan Konovalenko Alexander	10.3390/s151229768	https://doaj.org/article/	UAV visual odomet	
13	12	Polar Glycosylated and Lateral Non-Glycosylated	Kelly M. Fulton Elena Mendoza-Barberá Susan M	10.3390/ijms161226097	https://doaj.org/article/	O-flagellin polar gly	
14	13	Selective Oxidation of Glycerol with 3% H2O2	Gongde Wu Xiaoli Wang Taineng Jiang Qibo Lin	10.3390/catal5042039	https://doaj.org/article/	layered-double hydr	
15	14	A Copper-Based Metal-Organic Framework as an	Wei Long Wenge Qiu Chongwei Guo Chuanqian	10.3390/molecules201219756	https://doaj.org/article/	metal-organic fram	
16	15	Performance-Based Cognitive Screening	Andrew J. Larner	10.3390/diagnostics5040504	https://doaj.org/article/	diagnosis cognitive	
17	16	Aberrant GLI1 Activation in DNA Damage	Komaraiah Palle Chinnadurai Mani Kaushlendra	10.3390/cancers7040894	https://doaj.org/article/	hedgehog signaling	
18	17	Trends and Potential of the Market for Combine	Clemens Fuchs Joachim Kasten Mathias Urbanek	10.3390/machines3040364	https://doaj.org/article/	combine harvesters	
		· Iterities a contract	and the state of the state of	10.0000/ 1 1.001010700	1.0. 1/1 - 1.0.1.1		

DATASET DESCRIPTION

- 5 CSV (comma-separate values) files: articles, journals, languages, licenses, publishers
- The information in these tables are from a sample of 51 different journals published during 2015.
- CSV plain text file that stores tables and spreadsheet

DB Browser for SQLite - C:\doaj-article-sample.db												
File	File Edit View Tools Help											
	Revert Changes											
Da	atabase	Structure	Brow	vse Data	E	dit Prag	gmas	Execu	ite SQ	χL		
<u>T</u> ab	ole: 🔳	licences		~	3	76	-			B ,	6	4
	id	Liceno	e									
	Filter	Filter										
1	1	CC BY										
2	2	CC BY-NC	-ND									
3	3											
4	4	CC BY-NC										

DATASET DESCRIPTION

articles

- Contains individual article Titles and the associated citations and metadata
- (16 fields, 1001 records)
- Field names: id, Title, Authors, DOI, URL, Subjects, ISSNs, Citation, LanguageID, LicenseID, Author_Count, First_Author, Citation_Count, Day, Month, Year

journals

- Contains various journal Titles and associated metadata.
- (5 fields, 51 records)
- Field names: id, ISSN-L,ISSNs, PublisherID, Journal_Title

languages

- ID table which associates language codes with id numbers
- (2 fields, 4 records)
- Field names: id, Language

licenses

- ID table which associates License codes with id numbers
- (2 fields, 4 records)
- Field names: id, Licence

publishers

- ID table which associates Publisher names with id numbers
- (2 fields, 6 records)
- Field names: id, Publisher

SQL Data Type Quick Reference

Different database software/platforms have different names and sometimes different definitions of data types, so you'll need to understand the data types for any platform you are using. The following table explains some of the common data types and how they are represented in SQLite; more details available on the SQLite website.

Data type	Details	Name in SQLite
boolean or binary	this variable type is often used to represent variables that can only have two values: yes or no, true or false.	doesn't exist - need to use integer data type and values of 0 or 1.
integer	sometimes called whole numbers or counting numbers. Can be 1,2,3, etc., as well as 0 and negative whole numbers: -1,-2,-3, etc.	INTEGER
float, real, or double	a decimal number or a floating point value. The largest possible size of the number may be specified.	REAL
text or string	and combination of numbers, letters, symbols. Platforms may have different data types: one for variables with a set number of characters - e.g., a zip code or postal code, and one for variables with an open number of characters, e.g., an address or description variable.	TEXT
date or datetime	depending on the platform, may represent the date and time or the number of days since a specified date. This field often has a specified format, e.g., YYYY-MM-DD	doesn't exist - need to use built-in date and time functions and store dates in real, integer, or text formats. See Section 2.2 of SQLite documentation for more details.
blob	a Binary Large OBject can store a large amount of data, documents, audio or video files.	BLOB

Highlighted are main data types in our doaj-article-sample database.

Description: dog wearing sunglasses

SELECTING AND SORTING DATA

- A Query is a question or request for data
- Query a database by asking the same question using a common language SQL in this case
- Queries can have multiple *statements*
- SQL statement types can be grouped into five different categories:
 - Data definition language (DDL)
 - Data manipulation language (DML) Managing data within tables
 - Data Control Language (DCL)
 - Transaction Control Statement (TCS)
 - Session Control Statements (SCS)

WRITE YOUR FIRST QUERY

Write a SQL query that selects only the "Title" column from the "articles" table.

#1

SQL
SELECT title FROM articles;

- Capitalization of SELECT and FROM is only for readability and represents good style
- Some tables and columns require capitalization and some do not
- Final statement in query should end with a semi-colon (;)

GOOD STYLE

- Many variations in SQL queries
- Good style makes your queries easier to read
- Choose column names that are short (one or two words) when designing your tables
- Spaces in column names will create errors, use CamelCase or An_Underscore
- SQL keywords/commands are case-insenstitive, but it matters in some SQL programs. Check capitalization if your query isn't working.

READABILITY

• General consensus with SQL - if you can break it into components on multiple lines, queries become easier to read

SQL

SELECT articles.Title, articles.First_Author, journals.Journal_Title, publishers.Publisher FROM articles JOIN journals ON articles.ISSNs = journals.ISSNs J OIN publishers ON publishers.id = journals.PublisherId;

SQL

SELECT articles.Title, articles.First_Author, journals.Journal_Title, publishers.Publisher
FROM articles
JOIN journals
ON articles.ISSNs = journals.ISSNs
JOIN publishers
ON publishers.id = journals.PublisherId;

MORE SELECTION QUERIES

• Add more fields to retrieve more information

ш	7
Ŧ	
••	_

SQL

SELECT Title, Authors, ISSNs, Year FROM articles;

• Use wildcard (*) to select all of the columns in a table

#3

SQL
SELECT * FROM articles;

UNIQUE VALUES

• Add DISTINCT to find only unique records

|--|

QL		

SELECT DISTINCT ISSNs FROM articles;

• If we select more than one column, then the distinct pairs of values are returned.

#5

SQL

SELECT DISTINCT ISSNs, Day, Month, Year FROM articles;

SORTING

• Sort the results of queries using the keyword ORDER BY, also referred to as a *clause*

Create a query that sorts the articles table in ascending order by ISSNs using the ASC keyword in conjunction with ORDER BY.

#6

SELECT *
FROM articles
ORDER BY ISSNs ASC;

• ASC is the default

SQL

SORTING

• Add DESC to sort in a different direction

4	7
#	

SELECT * FROM articles ORDER BY First_Author DESC;

SQL

• Sort several fields in different directions

SQL SELECT * FROM articles ORDER BY ISSNs DESC, First_Author ASC;

CHALLENGE

🖍 Challenge

Write a query that returns Title, First_Author, ISSNs and Citation_Count from the articles table, ordered by the top cited article and alphabetically by title.

Solution

100	
_	

SELECT Title, First_Author, ISSNs, Citation_Count FROM articles ORDER BY Citation_Count DESC, Title ASC;

MINI BREAK

Description: Monkey hugging a kitten

https://gateway.okhistory.org/ark:/67531/metadc427038/

FILTERING

• Find data for a specific set of conditions using the WHERE clause

Write a query that returns only articles from the journal Acta Crystallographica (ISSN 2056-9890).

10	SQL
10	SELECT * FROM articles WHERE ISSNs='2056-9890';

FILTERING

• Add additional conditions using AND, OR, and/or NOT in clauses

11: Write a query that returns only articles from the journal Acta Crystallographica (ISSN 2056-9890) published after October. 12: Write a query that returns articles from Humanities and Religions journals (ISSNs "2076-0787" and "2077-1444")

• Parentheses are used merely for readability in this case but can be required by the SQL interpreter in order to disambiguate formulas.

FILTERING

• Use comparison keywords; such as LIKE, IN, BETWEEN ... AND, IS NULL; when you do know the value you are searching for.

Write a query that returns all of the data where the subject contains "Crystal Structure."

Ħ	1	2
Π	4	

SQL

SELECT * FROM articles WHERE Subjects LIKE '%Crystal Structure%';

• The wildcard character "%" is used to match zero to many characters.

CHALLENGE

✓ Challenge

Write a query that returns the Title, First_Author, Subjects, ISSNs, Month and Year for all papers where Subjects contains "computer" and that have more than 8 citations.

Solution

SQL

SELECT Title, First_Author, Subjects, ISSNs, Month, Year
FROM articles
WHERE (Subjects LIKE '%computer%') AND (Citation_Count > 8);

MINI BREAK

Description: circus ponies

https://gateway.okhistory.org/ark:/67531/metadc1474023/

ORDERING

#14

Order of execution

SQL

SELECT Title, Authors FROM articles WHERE ISSNs = '2067-2764|2247-6202' ORDER BY First_Author ASC; \star The computer is basically doing this:

- 1. Filtering rows according to WHERE
- 2. Sorting results according to ORDER BY
- 3. Displaying requested columns or expressions.
- It isn't necessary to display the First_Author column in order to sort by it
- Sorting occurs earlier in the computational pipeline
- Clauses are written in a fixed order: SELECT, FROM, WHERE, then ORDER BY

COMPLEX QUERIES

- SQL offers the flexibility of iteratively adding new conditions, but this can make them difficult to read and inefficient.
- Make complex queries more readable by:
 - 1. Rewriting so the logic is easy to follow
 - 2. Adding comments for context and clarity
- Start with a simple query, add clauses one by one to test effectiveness

COMPLEX QUERIES

	SQL
#15	SELECT * FROM articles WHERE (ISSNs = '2076-0787') OR (ISSNs = '2077-1444') OR (ISSNs = '2067-2764 2247-6202');

• Queries 15 and 16 return the same results; adding IN to the WHERE clause improves readability

- Comments explain the logic of a query and do not affect the executable code
- Comments begin using and end at the end of the line

COMMENTING

• Enclose a line in /* and */ to make an entire paragraph a comment

SQL				
/*In this section we want to g join multiple tables.*/	ive an example how to			
First we mention all the fi	e_] 💓 DB Browser for SQLite - C:\doaj-article-sample.db			
SELECT articles.Title, articles	5. File Edit View Tools Help			
from the first table	New Database Open Database			
FROM articles				
and join it with the second	t Browse Data Edit Pragmas Execute SQL			
JOIN journals				
The related attributes are:	SQL 1 SQL 1			
ON articles.ISSNs = journals.I	SS 1 SELECT ISSNs COUNT(*)			
We want to join a third tab	l€ 2 FROM articles			
JOIN publishers	3 GROUP BY ISSNs;			
the related attributes are:				

BREAK (10 minutes)

Description: Squirrel relaxing on bench on UNT Library Mall on a hot day

- Most common functions are MAX, MIN, AVG, COUNT, SUM
 - MAX (find the maximum value in a field)
 - MIN (find the minimum value in a field)
 - AVG (find the average value of a field)
 - COUNT (count the number of values in a field and present the total)
 - SUM (add up the values in a field and present the sum).

Write a query that returns the average Citation_Count for each journal in "articles".

	SQL
#18	SELECT ISSNs, AVG(Citation_Count) FROM articles GROUP BY ISSNs;

- GROUP BY is used by SQL to arrange identical data into groups
- This process is also called *aggregation* combining results based on value and calculating combined values in groups

#19

SQL

SELECT ISSNs, AVG(Citation_Count)
FROM articles
GROUP BY ISSNs
ORDER BY AVG(Citation_Count) DESC;

• Use ORDER BY clause to make results more useful

🖍 Challenge

Write a query using an aggregate function that returns the number of article titles per ISSNs, sorted by title count in descending order. Which ISSN has the most titles? (Hint to choosing which aggregate function to use - it is one of the common aggreggate functions MAX, MIN, AVG, COUNT, SUM.)

Solution

SQL

SELECT ISSNs, COUNT(Title) FROM articles GROUP BY ISSNs ORDER BY count(Title) DESC;

• *Having* keyword filters results based on aggregate functions – works like *WHERE* clause

	SQL
#20	SELECT ISSNs, COUNT(*) FROM articles GROUP BY ISSNs HAVING count(Title) >= 10;

- Query #20 returns only information about journals with 10 or more published articles
- *Having* appears after GROUP BY statement: the data are retrieved (SELECT), can be filtered (WHERE), then joined in groups (GROUP BY); finally, we only select some of these groups (HAVING).

🖍 Challenge

Write a query that returns, from the articles table, the average Citation_Count for each journal ISSN but only for the journals with 5 or more citations on average.

0	So	lution	Ē
---	----	--------	---

C	0	
0	S	-

```
SELECT ISSNs, AVG(Citation_Count)
FROM articles
GROUP BY ISSNs
HAVING AVG(Citation_Count)>=5;
```

CALCULATIONS

• *Computed columns* are calculations within queries

- Expressions on a column or columns get new values during a query
- Arithmetic operators (like +, -, *, /, square root SQLRT or the modulo operator %) are also useful for calculating new values

MINI BREAK

Description: photograph of miniature book and ruler

https://texashistory.unt.edu/ark:/67531/metadc3588/

- JOIN clause allows us to combine columns from one or more tables in a database by using values common to each
- Follows the FROM clause in a SQL statement
- Tell the computer which columns provide the link between the two tables using the word ON
- Creating aliases allows us to spend less time typing, and more time querying!

Write a query that joins the articles table with the journals table.

	SQL		SQL
#22	SELECT * FROM articles JOIN journals ON articles.ISSNs = journals.ISSNs;	#23	SELECT * FROM articles JOIN journals USING (ISSNs);

- ISSNs columns in both these tables link them
- ON, like WHERE filters, according to a test condition
- Use the table.column format or the word USING

• Use table.colname to join in the SELECT clause

SQL

#24

SELECT articles.ISSNs, journals.Journal_Title, articles.Title, articles.First_Author, articles.Month, articles.Year
FROM articles
JOIN journals
ON articles.ISSNs = journals.ISSNs;

• Joins can be combined with sorting, filtering, and aggregation

SQL

#25

SELECT articles.ISSNs, journals.Journal_Title, ROUND(AVG(articles.Author_Count), 2)
FROM articles
JOIN journals
ON articles.ISSNs = journals.ISSNs
GROUP BY articles.ISSNs;

• ROUND function rounds the Author_Count number returned by the AVG function by 2 decimal places.

🖍 Challenge

Write a query that JOINS the articles and journals tables and that returns the Journal_Title, total number of articles published and average number of citations for every journal ISSN.

Solution SQL SELECT journals.Journal_Title, count(*), avg(articles.Citation_Count) FROM articles JOIN journals ON articles.ISSNs = journals.ISSNs GROUP BY articles.ISSNs;

• You can also JOIN multiple tables:

SQL

#26

SELECT articles.Title, articles.First_Author, journals.Journal_Title, publishers.Publisher
FROM articles
JOIN journals
ON articles.ISSNs = journals.ISSNs
JOIN publishers
ON publishers.id = journals.PublisherId;

✓ Challenge:

Write a query that returns the Journal_Title, Publisher name, and number of articles published, ordered by number of articles in descending order.

Solution

SQL

SELECT journals.Journal_Title, publishers.Publisher, COUNT(*)
FROM articles
JOIN journals
ON articles.ISSNs = journals.ISSNs
JOIN publishers
ON publishers.id = journals.PublisherId
GROUP BY Journal_Title
ORDER BY COUNT(*) DESC;

• To make things clearer as queries become more complex, use aliases to assign new names to items in the query

#27	Table names	#28	Column names
SQL		SQL	
SELECT ar.Title, ar.First_Author, jo.Journal_Title ROM articles AS ar DOIN journals AS jo DN ar.ISSNs = jo.ISSNs;		SELECT ar.title AS title FROM articles AS ar JOIN journals AS jo ON ar.issns = jo.issns;	, ar.first_author AS author, jo.journal_title AS journal

• AS is not required for the query to work but is an example of good style

MINI BREAK

Description: orange and white cat inside a clothes dryer

https://texashistory.unt.edu/ark:/67531/metapth908662/

SAVING QUERIES

- Views are queries saved in the database
- Query a view as a (virtual) table that is populated every time you query it

• Saving a query requires you to add CREATE VIEW viewname AS before the query itself

SAVING QUERIES

• Access the results of query #29 using shorter notation:

\$QL \$ELECT * FROM journal_counts;

• Remove the above view from the database using DROP VIEW

#31

SQL DROP VIEW journal_counts;

AVING QUERIES	DB Browser for SQLite - C:\doaj-article-sample.db File Edit View Tools Help New Database Open Database Open Database Patabase Structure Browse Data Edit Pragmas Execute SQL Export to CSV SQL 1 SELECT ISSNs, COUNT (*) Save as view 2 FROM articles 3 GROUP BY ISSNs;
Database Structure Browse Data Edit Pragmas Exec Create Table Create Index Print	zute SQL ype Schema
 articles journals languages licences publishers sqlite_sequence 	CREATE TABLE "articles" ("id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, "Title" TEX CREATE TABLE "journals" ("id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, "ISSN-L" CREATE TABLE "languages" ("id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, "Langu CREATE TABLE "licences" ("id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, "Licence" CREATE TABLE "publishers" ("id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, "Licence" CREATE TABLE sqlite_sequence(name,seq)
 Indices (0) Views (1) journaLcounts Triggers (0) 	CREATE VIEW "journaLcounts" AS SELECT ISSNs, COUNT(*) FROM articles GROUP BY ISSNs

SAVING QUERIES

Challenge

Write a CREATE VIEW query that JOINS the articles table with the journals table on ISSNs and returns the COUNT of article records grouped by the Journal_Title in DESC order.

Solution

SQL
CREATE VIEW journal_counts AS SELECT journals.Journal_Title, COUNT(*) FROM articles JOIN journals ON articles.ISSNs = journals.ISSNs
GROUP BY Journal_Title ORDER BY COUNT(*) DESC

MINI BREAK

Description: Photograph of Julia Muegge's dog sleeping on a dog bed and covered by a blanket.

https://texashistory.unt.edu/ark:/67531/metadc1752551/

- CREATE TABLE
 - Two words for a single command
 - Creates a new table
 - Arguments are names and types of the table's columns

#34

• Can specify several kinds of constraints on its columns when creating a table

```
SQL

CREATE TABLE "journals" (

"id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

"ISSN-L" TEXT,

"ISSNs" TEXT,

"PublisherId" INTEGER,

"Journal_Title" TEXT,

CONSTRAINT "PublisherId" FOREIGN KEY("PublisherId") REFERENCES "publishers"("id")

);
```

66

• Add, change or remove records using INSERT, UPDATE, and DELETE

SQL

#35

INSERT INTO "journals" VALUES (1,'2077-0472','2077-0472',2,'Agriculture'); INSERT INTO "journals" VALUES (2,'2073-4395','2073-4395',2,'Agronomy'); INSERT INTO "journals" VALUES (3,'2076-2616','2076-2616',2,'Animals');

SQL

#36

CREATE TABLE "myjournals"(Journal_Title text, ISSNs text); INSERT INTO "myjournals" SELECT Journal_Title, long ISSNs journals;

- Query 35 inserts rows into the "journals" table
- Query 36 inserts values into one table directly from another

• Use UPDATE to modify existing records – good for correcting typos

Tell the database which table to update, what the values should be for the fields, and conditions WHERE values should be updated. (Otherwise all will be modified!)

• Use DELETE and WHERE clause to match records to discard

🖍 Exercise

Write an SQL statement to add the journal "New Journal of Physics" (ISSNs & ISSNs: 1367-2630; publisher: "Institute of Physics (IOP)") to the table journals. You need to add the publisher "IOP" to the table publishers as well.

Solution

SQL

INSERT INTO "publishers" VALUES (7,'Institute of Physics (IOP)'); INSERT INTO "journals" VALUES (52,'1367-2630','1367-2630',7,'New Journal of Physics');

Backing Up with SQL

SQLite has several administrative commands that aren't part of the SQL standard. One of them is <u>.dump</u>, which prints the SQL commands needed to re-create the database. Another is <u>.read</u>, which reads a file created by <u>.dump</u> and restores the database. A colleague of yours thinks that storing dump files (which are text) in version control is a good way to track and manage changes to the database. What are the pros and cons of this approach? (Hint: records aren't stored in any particular order.)

Solution

Advantages

- A version control system will be able to show differences between versions of the dump file; something it can't do for binary files like databases
- A VCS only saves changes between versions, rather than a complete copy of each version (save disk space)
- The version control log will explain the reason for the changes in each version of the database

Disadvantages

• Artificial differences between commits because records don't have a fixed order

EXTRA CHALLENGES AND SURVEYS

https://librarycarpentry.org/lc-sql/11-extra-challenges/index.html

*POST WORKSHOP SURVEY: https://carpentries.typeform.com/to/UgVdRQ?slug=2021-08-06-unt-online

*SOFTWARE CARPENTRY SURVEY: https://unt.az1.qualtrics.com/jfe/form/SV_7a1WNVkwwPM8RjU